viernes, 30 de marzo de 2012

el asma


video

Descripcion de modos ventilatorios

DESCRIPCION DE LOS MODOS VENTILATORIOS

Modalidades Ventilatorias Convencionales

1. Asistida-controlada. (A/C CMV)


El soporte ventilatorio mecánico total asistido-controlado es la modalidad más básica de VM, se emplea en aquellos pacientes que presentan un aumento considerable de las demandas ventilatorias y que por lo tanto necesitan sustitución total de la ventilación. La modalidad asistida-controlada permite iniciar al paciente el ciclado del ventilador partiendo de un valor prefijado de frecuencia respiratoria (f) que asegura, en caso de que éste no realice esfuerzos inspiratorios, la ventilación del paciente. Para que esto suceda, el valor de “trigger” (sensibilidad) deberá estar fijado en un nivel ligeramente inferior al de autociclado del ventilador.(4) En función de cuál sea la variable que se prefije en el ventilador, la modalidad asistida-controlada puede ser controlada a volumen o controlada a presión. En la controlada a volumen se fijan los valores de volumen circulante y de flujo, siendo la presión en la vía aérea una variable durante la inspiración. El aspecto más novedoso introducido recientemente en la modalidad de controlada a volumen es la ventilación con hipercapnia permisiva que se describe más adelante.

2. Ventilación mandatoria intermitente sincronizada. (SIMV)

La ventilación mandatoria intermitente sincronizada permite al paciente realizar respiraciones espontáneas intercaladas entre los ciclos mandatorios del ventilador, la palabra sincronizada hace referencia al período de espera que tiene el ventilador antes de un ciclo mandatorio para sincronizar el esfuerzo inspiratorio del paciente con la insuflación del ventilador. Cuando se emplea con f elevadas cubre las demandas ventilatorias del paciente, siendo equiparable a la ventilación asistida-controlada convencional. Empleada con frecuencias bajas, la SIMV permite la desconexión progresiva de la Ventilación Mecanica (VM). A pesar de que estudios recientes han demostrado que, comparativamente con otras técnicas, la SIMV prolonga el período de desconexión de la VM,(5) su uso está ampliamente extendido (6). Recientemente se ha asociado su empleo a la presión de soporte, de manera que puede ajustarse un valor de presión de soporte para los ciclos espontáneos del paciente. En términos de confort, valorado como la no percepción subjetiva de disnea y ansiedad, no se han observado diferencias al comparar la SIMV y la PSV durante la retirada progresiva de la VM.

3. Ventilación con presión de soporte. (PSV)

La ventilación con presión de soporte (PSV) es una modalidad asistida, limitada a presión y ciclada por flujo, que modifica el patrón ventilatorio espontáneo, es decir, disminuye la frecuencia respiratoria y aumenta el volumen circulante. El ventilador suministra una ayuda a la ventilación, programada a partir del nivel de presión de soporte. La presión se mantiene constante durante toda la inspiración, y de forma paralela el flujo disminuye progresivamente hasta alcanzar el nivel que permite el inicio de la espiración. Esta modalidad de soporte parcial es ampliamente usada, ya que permite sincronizar la actividad respiratoria del paciente con el ventilador al responder a los cambios de la demanda ventilatoria del paciente. Además, preserva el trabajo respiratorio y reduce la necesidad de sedación y curarización, facilitando por lo tanto la desconexión de la VM.(7)

Modalidades Alternativas

 1. Ventilación controlada a presión. (PCV)

La ventilación controlada a presión se propone con la finalidad de limitar la presión alveolar. En esta modalidad se ajusta el nivel de presión inspiratoria que se desea utilizar, la frecuencia respiratoria y la duración de la inspiración, y son variables el volumen circulante y el flujo. La limitación más destacable es el riesgo de hipoventilación y los efectos que se pueden producir debido a las modificaciones en el volumen. Por este motivo, es frecuente asociar la utilización de la ventilación controlada a presión con la relación I:E invertida, ya que la prolongación del tiempo inspiratorio puede de alguna manera evitar la hipoventilación.

2. Ventilación con relación I:E invertida. (IRV)

La relación I:E (inspiración:espiración) convencional es de 1:2 a 1:4. La ventilación con relación I:E invertida, es decir, con ratios superiores a 1:1, puede asociarse a ventilación controlada a volumen o controlada a presión (9-10). El hecho de que la inspiración sea más alargada evita, como se ha comentado, la hipoventilación en el caso de que se asocie a ventilación controlada a presión. El acortamiento del tiempo espiratorio impide el completo vaciado pulmonar, de forma que se produce atrapamiento pulmonar, con la consiguiente aparición de auto-PEEP. Esta auto-PEEP se debe monitorizar regularmente mediante una maniobra de pausa espiratoria, ya que en ventilación controlada a volumen genera un aumento de la presión de la vía aérea y en ventilación controlada a presión comporta una disminución del volumen circulante.
Estudios recientes no demuestran ningún beneficio evidente del empleo de la ventilación con relación I:E invertida, y la ventilación controlada a presión en relación a la clásica controlada a volumen. Cuando se emplea esta modalidad ventilatoria el paciente puede precisar dosis de sedación elevadas e incluso la administración de relajantes musculares.

3. Hipercapnia permisiva. (PH)

Para garantizar la normocapnia durante la VM, a veces deben emplearse volúmenes circulantes elevados, con el consiguiente aumento de la presión en la vía área, la aparición de alteraciones hemodinámicas y el riesgo de baro/volutrauma. La ventilación con hipercapnia permisiva tiene como finalidad el disminuir la incidencia de baro/volutrauma al ventilar al paciente con volúmenes circulantes alrededor de 5 ml/kg, sin que éstos generen presiones en la vía aérea superiores a 35 mmHg. Este tipo de ventilación produce una acidosis respiratoria por hipercapnia, hecho que incrementa el estímulo central y hace que los pacientes requieran dosis elevadas de sedación y a menudo curarización. Su empleo está contraindicado en las situaciones de hipertensión endocraneal, patologías convulsionantes y en la insuficiencia cardiocirculatoria. Algunos estudios demuestran que la ventilación con hipercapnia permisiva reduce la incidencia de barotrauma y mejora la supervivencia en pacientes con lesión pulmonar aguda, junto con una reducción de la duración de la ventilación, de la estancia media en la UCI y de las infecciones pulmonares.(13)
En dos estudios recientes se ha comparado de forma prospectiva y randomizada los efectos de la ventilación con hipercapnia permisiva vs la ventilación convencional. En el estudio de Amato(14) la incidencia de barotrauma fue claramente diferente en los dos grupos, 42 % en el grupo control y 7 % en el grupo tratado con hipercapnia permisiva, pero no se observaron diferencias significativas entre las dos modalidades en la mortalidad al alta del hospital. En el estudio multicéntrico de Brochard realizado en 116 pacientes con SDRA, de forma randomizada se ventilaba a los pacientes con VT inferior a 10 ml/kg de peso y limitando la presión meseta a 25 cmH2O, constituyendo este grupo el de la hipercapnia permisiva, o con VT superior a 10 ml/kg de peso y sin límite de presión, formando estos pacientes el grupo control. En los resultados obtenidos no se observaron diferencias significativas en la mortalidad a los 60 días (47 % en el grupo de la hipercapnia permisiva vs 38 % en el grupo control, p= 0,38), ni en la incidencia de neumotórax (14% vs 12 % grupo de hipercapnia, grupo control respectivamente p= 0,78). Queda por tanto todavía por demostrar si esta modalidad ventilatoria representa una terapéutica eficaz para modificar el pronóstico de los pacientes con SDRA.

 4. Ventilación mandatoria minuto. (MMV)

En la década de los setenta Hewlett et al15 propusieron la ventilación mandatoria minuto (VMM) como modalidad para desconectar a los pacientes de la VM. Esta modalidad garantiza un nivel mínimo de ventilación minuto para cubrir las demandas del paciente, el paciente decide la frecuencia respiratoria (b) y el ventilador ajusta los parámetros en función de su respuesta. El modo de funcionamiento varía de un ventilador a otro, se ajusta un volumen minuto mínimo y teniendo en cuenta el volumen minuto espontáneo del paciente, el ventilador administra el volumen minuto restante modificando la f o el VT. En un estudio de Lemaire en el que se valoraban los efectos de la VMM en 10 pacientes afectos de IRA, se puso de manifiesto que la VMM proporcionaba una ventilación adecuada y segura si se ajustaba el apropiado soporte ventilatorio. A pesar de ser una modalidad ampliamente descrita en la literatura, su uso rutinario es poco frecuente.

5. Ventilación con liberación de presión (APRV)

La APRV combina los efectos positivos de la presión positiva continua en la vía aérea (CPAP), con el incremento en la ventilación alveolar obtenido por el descenso transitorio de la presión en la vía aérea desde el nivel de CPAP a un nivel inferior. La ventilación con liberación de presión proporciona períodos largos de insuflación, intercalados con períodos breves de deflación pulmonar. Es una modalidad de soporte ventilatorio parcial ciclada por el ventilador o por el paciente y en la que durante el período de insuflación el paciente puede respirar espontáneamente. Su principal ventaja radica en el hecho de que la presión en la vía aérea se puede fijar en un nivel modesto, y además como la presión se mantiene durante un período más largo del ciclo respiratorio se produce un reclutamiento alveolar. En teoría, los breves períodos de deflación no permiten el colapso alveolar, pero sí es suficiente para que el intercambio de gases no se vea afectado por el aclaramiento de CO2. La experiencia clínica es limitada, pero los primeros datos demuestran que se produce un correcto intercambio de gases y además se produce una coordinación con el paciente, a pesar de que sea un patrón respiratorio inusual. 

6. Presión bifásica positiva en la vía aérea. (BIPAP) (Bilevel)

La presión bifásica positiva en la vía aérea (BIPAP) es, al igual que la APRV, otra modalidad controlada a presión y ciclada a tiempo. La duración de cada fase con su nivel correspondiente de presión se puede ajustar de forma independiente. Permite al paciente inspirar de forma espontánea en cualquier momento del ciclo respiratorio. En caso de que el paciente no realice ningún esfuerzo inspiratorio, el comportamiento del respirador será el mismo que en ventilación controlada a presión.

7. Presión positiva continua en la vía aérea. (CPAP)

Es una modalidad de respiración espontánea con PEEP, en la cual se mantiene una presión supraatmosférica durante todo el ciclo ventilatorio. El flujo debe ser alto para garantizar un aporte de gas elevado, superior a los requerimientos del paciente y las oscilaciones de presión pequeñas (< 5 cm. H2O) para no provocar trabajo respiratorio excesivo.
Hay dos formas de practicarla: a) a través del respirador con válvula de demanda b) con sistema de flujo continuo, que necesita caudalímetros de alto débito y balón-reservorio de gran capacidad para estabilizar el flujo y la presión y amortiguar sus variaciones; se puede aplicar con máscara facial sin vía aérea artificial como una modalidad de ventilación mecánica no invasiva.

8. Ventilación de alta frecuencia. (HFV)

La ventilación de alta frecuencia se experimentó por primera vez en perros en 1967. De forma general se define como el soporte ventilatorio que utiliza frecuencias respiratorias superiores a las habituales, alrededor de 100 respiraciones por minuto en adultos y de 300 en pacientes pediátricos o neonatales. Para poder suministrar gas a estas frecuencias se deben emplear mecanismos específicos, que generalmente consisten en osciladores o “jets” de alta frecuencia, ya que los ventiladores convencionales no pueden trabajar a frecuencias tan elevadas. Diferentes estudios han demostrado un transporte razonable de gases, pero no se han demostrado diferencias en la supervivencia, días de estancia en la UCI, ni reducción en las complicaciones al compararla con la ventilación convencional.

Nuevas Modalidades Ventilatorias

La tabla # 3 recoge las nuevas modalidades ventilatorias propuestas con la finalidad de responder de forma efectiva a los cambios que se producen en la demanda ventilatoria del paciente y para mejorar la interacción paciente-ventilador. Algunas de las nuevas modalidades ventilatorias permiten al ventilador controlar el volumen o la presión basándose en un mecanismo de feedback de volumen. Estas modalidades reciben el nombre de modalidades de control dual. Existen dos tipos de control dual, el primero realiza modificaciones en los parámetros del ventilador dentro del mismo ciclo respiratorio y el segundo realiza las modificaciones pertinentes ciclo a ciclo, es decir, modifica el soporte en el ciclo siguiente, a partir de los datos recogidos en el ciclo anterior.

Las nuevas modalidades que prestan especial atención a la sincronía entre el paciente y el ventilador son el Automode, la Compensación Automática del Tubo Endotraqueal, el Flow-by, el Patrón Espontáneo Amplificado y la Ventilación Asistida Proporcional. Finalmente en este apartado también se incluye la ventilación líquida, ya que es una nueva modalidad ampliamente utilizada en estudios experimentales.

1. Modalidades de control dual

a) Control dual en el mismo ciclo
En la modalidad de control dual en un ciclo, este control permite el paso de presión control a volumen control en medio del ciclo. La terminología que emplean las casas comerciales para denominar estas modalidades ventilatorias son:
a) Aumento de presión: La ventilación comienza como controlada a presión, si el volumen no se ha entregado cuando el flujo decae, entonces la ventilación pasa a volumen control. Si la presión cae por debajo del valor ajustado entonces vuelve a control de presión.Está disponible en el ventilador BEAR 1000 (Allied Healtcare Products, Inc).
b) Soporte de presión con volumen asegurado (VAPS): El respirador asegura un volumen tidal predeterminado a una mínimo de presión, n modalidad de los ventiladores TBird y Bird 8400ST (Bird Corp., Palm Springs, CA). La descripción inicial de esta modalidad ventilatoria la realizó Amato, en un estudio realizado en ocho pacientes con IRA, y observaron una reducción del 50% en el trabajo respiratorio, al comparar la VAPS con la ventilación controlada a volumen clásica.
b) Control dual ciclo a ciclo
En las modalidades de control dual ciclo a ciclo, el límite de presión de cada ciclo aumenta o disminuye en función del volumen circulante del ciclo previo. Dependiendo de si es el flujo o el tiempo el responsable de finalizar la inspiración, la ventilación limitada a presión puede ser ciclada a flujo o ciclada a tiempo.
· Limitadas a presión y cicladas a flujo
Las nuevas modalidades de ventilación limitada a presión y ciclada a flujo son:
a) Volumen soporte o volumen asistido. (VA) (Siemens 300; Siemens-Elema AB, Solna, Sweden).
b) Presión de soporte variable. (VPS) (Venturi; Cardiopulmonary Corporation, New Haven, CT).
En estas modalidades, se programa un VT y un volumen minuto deseados, así como una f de referencia, y el ventilador, de forma automática en cada ciclo, calcula y ajusta el nivel de presión de soporte necesario para conseguir el volumen prefijado en función de la mecánica pulmonar del paciente. Durante este tipo de ventilación se debe prestar atención a las alarmas de volumen espirado mínimo y máximo. Las alarmas que responden a un alto o bajo volumen espirado pueden indicar cambios en la constante de tiempo del sistema respiratorio, pérdidas alrededor del tubo endotraqueal o de los pulmones o desconexión del circuito del paciente. En la actualidad no existen estudios que evalúen estas técnicas.
· Limitadas a presión y cicladas a tiempo
En las nuevas modalidades de ventilación limitada a presión y ciclada a tiempo, se emplea el volumen como un control de feedback para ajustar de forma continua el límite de presión. La supuesta ventaja de estas modalidades es el mantenimiento de un pico mínimo de presión que permite administrar un volumen predeterminado y la desconexión automática del paciente cuando éste mejora. Dentro de estas modalidades se incluye:

a) Ventilación controlada a volumen y regulada a presión. (PRVC): Se ajusta la presión a su menor nivel posible entregando el volumen prefijado (Siemens 300; Siemens-Elema AB, Solna, Sweden).

b) Ventilación con soporte adaptativo. (ASV): El volumen minuto entregado se basa en el peso corporal ideal del paciente y el porcentaje del Volumen Minuto (VM) que debe aportarse. Durante cada inspiración el ventilador determina la mecánica pulmonar del paciente en cada respiración y a continuación ajusta la frecuencia, Volumen Tidal (VT) y la relación I:E para minimizar la presión y continuar manteniendo el volumen requerido. (Hamilton Galileo; Hamilton Medical, Reno, NV).

c) AutoFlow: No es una modalidad real. Es un aditamento que regula el nivel de flujo inspiratorio para generar menor presión y lograr el volumen programado.

d) Control de Presión Variable: El respirador censa el volumen tidal entre cada respiración, y en la siguiente respiración aumenta la presión de soporte hasta alcanzar paulatinamente el volumen tidal deseado.
Estas modalidades tienen el mismo principio de funcionamiento, ya que incorporan las ventajas de la ventilación controlada a volumen, es decir, se asegura un VT determinado y las ventajas de la controlada a presión, ya que limitan la presión en el valor ajustado. A pesar de ser modalidades muy interesantes no se dispone todavía de estudios suficientes que demuestren su efectividad.
Sincronía paciente-ventilador
 
1.Automode:
El Automode es una modalidad disponible en el Servo Siemens 300A (Siemens-Elema AB, Solna, Sweden), que combina soporte de volumen con control de volumen regulado a presión en una única modalidad, cambiando de una a otra en función de la actividad respiratoria del paciente.

2. Compensación automática del tubo endotraqueal (ATC)
La compensación automática del tubo endotraqueal, disponible en el Evita 4 (Drägerwerk AG, Lübeck, Alemania) y Puritan Bennet 840, compensa de forma automática la resistencia del tubo endotraqueal a través de un circuito cerrado de cálculo de la presión traqueal, ajustando la presión necesaria para garantizar el volumen tidal deseado.

3. Flow-by o flujo continuo

El flow-by o flujo continuo, disponible en el ventilador basado en microprocesador Serie 7200 (Nellcor Puritan Bennett Inc, Coral Springs, EE. UU.), mantiene una circulación constante de gas, que tiene como finalidad cubrir de forma inmediata el esfuerzo inspiratorio del paciente. El flujo continuo es activo en todas las respiraciones, ya sean mandatorias o espontáneas, sea cual sea la modalidad elegida como soporte ventilatorio. Para activarlo, se debe ajustar el flujo de base y la sensibilidad de flujo, necesario para que el ventilador reconozca la inspiración de paciente. Para no oponer resistencia a la salida del flujo del paciente, el flujo de base se reduce de forma automática durante la espiración. Sassoon demostró que cuando se empleaba el flujo continuo, la respuesta del ventilador al esfuerzo inspiratorio del paciente, era mucho más rápida (80 mseg) con una sensibilidad ajustada a tres litros/minuto, al compararse con un trigger de presión convencional ajustado a -1cm. H2O, en el que la respuesta del ventilador se producía a los 250 mseg del inicio del esfuerzo del paciente.

4. Patrón espontáneo amplificado (PEA)

La última modalidad comercializada que favorece la sincronía paciente-ventilador, es la ventilación vectorial incorporada en el respirador Vector * XXI, diseñado y fabricado por Temel S.A. Este ventilador además de disponer de todas las técnicas actuales de ventilación, ofrece la posibilidad de ventilar con un patrón de flujo similar al del paciente. En la modalidad de espontánea ofrece la novedad de la técnica de patrón espontáneo amplificado (PEA), en la que a partir de generar una pendiente rápida de flujo, en función de la demanda del paciente amplifica su propio patrón con la finalidad de cubrir sus demandas ventilatorias. En un estudio realizado en la unidad, en el que se comparaban los efectos fisiológicos de la PEA y de la PSV sobre el trabajo y el patrón respiratorio en 11 pacientes durante la fase de retirada de la VM, se puso de manifiesto que los efectos agudos de ambos métodos ventilatorios eran similares en términos de trabajo respiratorio, cuando el soporte proporcionado por el ventilador era equivalente.

5. Ventilación asistida proporcional (PAV)

La ventilación proporcional asistida permite optimizar las interacciones paciente-ventilador, estableciéndose una relación más sincrónica y armoniosa. El mecanismo de control de la ventilación del propio paciente es preservado y mejorado, y se produce una menor presión en la vía aérea, así como una menor probabilidad de sobredistensión.
Es un soporte ventilatorio interactivo que utiliza ganancias de flujo y de volumen para suministrar soporte ventilatorio a partir de las demandas del paciente. Cuanto mayor es el esfuerzo del paciente, mayor es el soporte que realiza el aparato. El objetivo es asegurar la sincronía entre el paciente y el ventilador durante niveles altos y moderados de soporte ventilatorio. Los datos clínicos demuestran que este tipo de ventilación facilita la sincronía entre el paciente y el ventilador, hecho que repercute en el confort del paciente. Recientemente, en un estudio de Ranieri, la PAV se ha utilizado con éxito para disminuir el trabajo respiratorio durante el soporte ventilatorio parcial en los pacientes EPOC.
Esta modalidad no tiene todavía aplicación clínica pero parece ser que está en preparación en los ventiladores que se comercializarán en un futuro no muy lejano.

6. Ventilación líquida (LV)

La ventilación líquida utiliza un líquido gas soluble para reemplazar o aumentar la ventilación. La primera aplicación biomédica de la ventilación líquida fue en 1962, el líquido empleado es el perfluorocarbono, el cual se distribuye en el pulmón generando presiones de insuflación muy bajas, posee además una alta solubilidad para los gases respiratorios. Un volumen determinado de perfluorocarbono saturado con oxígeno contiene por lo menos tres veces más oxígeno que el mismo volumen en sangre o aire. Las primeras investigaciones se realizaron sumergiendo completamente al animal en el líquido y se observó que a pesar de mantener una oxigenación adecuada se producía retención de CO2 y acidosis. Se han descrito dos técnicas, la ventilación líquida total y la ventilación líquida parcial. El fracaso de la ventilación líquida total motivó el desarrollo de la ventilación liquida parcial, en la que se combina la ventilación mecánica convencional con los principios de la ventilación líquida. El primer estudio en humanos se publicó en 1990, y puso de manifiesto que este tipo d e ventilación aumentaba la compliancia, facilitaba la expansión uniforme del pulmón y mejoraba la oxigenación sin producir compromiso hemodinámico. Actualmente no existen suficientes datos para asegurar si esta técnica es útil para prolongar los períodos o afecta a la supervivencia en animales o humanos, pero están en marcha diferentes estudios multicéntricos para valorar la efectividad de la ventilación líquida en distintos grupos de pacientes.

CONCLUSIONES

En un estudio reciente de Esteban et al,(32) realizado en 412 UCI de siete países: España, Portugal, Estados Unidos, Argentina, Brasil, Chile y Uruguay, con 4153 pacientes, el 39 % estaba en VM al ingreso en UCI, el 47 % en la modalidad asistida controlada, el 31 % en ventilación mandatoria intermitente sincronizada (SIMV) + presión de soporte (PS), el 15 % en PS y el 7 % restante en otras modalidades. De estos resultados se observa que el 93 % de los pacientes estaban ventilados con modalidades convencionales y que las modalidades alternativas y las nuevas modalidades están representadas por el 7% restante.
Desde la ultima década se dispone de nuevas modalidades ventilatorias que facilitan el destete y reducen la necesidad de una acción directa por el medico. Los clínicos deben comprender estas nuevas técnicas de ventilación y apreciar los matices en los algoritmos ventilatorios. La decisión de aplicar una modalidad particular de ventilación, sin embargo, debe basarse en una comprensión de la fisiología subyacente. Solo porque una nueva modalidad haga lo que dice hacer, no quiere decir que sea más útil, que las modalidades ya existentes. Desafortunadamente no existen datos suficientes que apoyen la efectividad de cualquier modalidad ventilatoria de destete. Cuando el ventilador se usa para destetar, la elección de una modalidad de destete en particular se determina casi siempre por las experiencia del intensivista, preferencias institucionales y la disponibilidad de ventiladores o modalidades especificas.


Oxigenoterapi

Oxigenoterapia

   Se define como oxigenoterapia el uso terapeútico del oxígeno siendo parte fundamental de la terapia respiratoria. Debe prescribirse fundamentado en una razón válida y administrarse en forma correcta y segura como cualquier otra droga.
   La finalidad de la oxigenoterapia es aumentar el aporte de oxígeno a los tejidos utilizando al máximo la capacidad de transporte de la sangre arterial. Para ello, la cantidad de oxígeno en el gas inspirado, debe ser tal que su presión parcial en el alvéolo alcance niveles suficiente para saturar completamente la hemoglobina. Es indispensable que el aporte ventilatorio se complemente con una concentración normal de hemoglobina y una conservación del gasto cardíaco y del flujo sanguíneo hístico.
    La necesidad de la terapia con oxígeno debe estar siempre basada en un juicio clínico cuidadoso y ojalá fundamentada en la medición de los gases arteriales. El efecto directo es aumentar la presión del oxígeno alveolar, que atrae consigo una disminución del trabajo respiratorio y del trabajo del miocardio, necesaria para mantener una presión arterial de oxígeno definida.
Indicaciones
La oxigenoterapia está indicada siempre que exista una deficiencia en el aporte de oxígeno a los tejidos. La hipoxia celular puede deberse a:
  1. Disminución de la cantidad de oxígeno o de la presión parcial del oxígeno en el gas inspirado
  2. Disminución de la ventilación alveolar
  3. Alteración de la relación ventilación/perfusión
  4. Alteración de la transferencia gaseosa
  5. Aumento del shunt intrapulmonar
  6. Descenso del gasto cardíaco
  7. Shock
  8. Hipovolemia
  9. Disminición de la hemoglobina o alteración química de la molécula
   En pacientes con hipercapnia crónica (PaCO2 + 44 mm Hg a nivel del mar) existe el riesgo de presentar depresión ventilatoria si reciben la oxigenoterapia a concentraciones altas de oxígeno; por lo tanto, está indicado en ellos la administración de oxígeno a dosis bajas (no mayores de 30%).
 
Toxicidad
   Esta se observa en individuos que reciben oxígeno en altas concentraciones (mayores del 60% por más de 24 horas, a las cuales se llega sólo en ventilación mecánica con el paciente intubado) siendo sus principales manifestaciones las siguientes:
  1. Depresión de la ventilación alveolar
  2. Atelectasias de reabsorción
  3. Edema pulmonar
  4. Fibrosis pulmonar
  5. Fibroplasia retrolenticular (en niños prematuros)
  6. Disminución de la concentración de hemoglobina
Administración
Para administrar convenientemente el oxígeno es necesario conocer la concentración del gas y utilizar un sistema adecuado de aplicación.
La FIO2 es la concentración calculable de oxígeno en el aire inspirado. Por ejemplo, si el volumen corriente de un paciente es de 500 ml y está compuesto por 250 ml de oxígeno, la FIO2 es del 50%.

SISTEMAS DE ADMINISTRACIÓN

    Existen dos sistemas para la administración de O2: el de alto y bajo flujo. El sistema de alto flujo es aquel en el cual el flujo total de gas que suministra el equipo es suficiente para proporcionar la totalidad del gas inspirado, es decir, que el paciente solamente respira el gas suministrado por el sistema. La mayoría de los sistemas de alto flujo utilizan el mecanismo Venturi, con base en el principio de Bernoculli, para succionar aire del medio ambiente y mezclarlo con el flujo de oxígeno. Este mecanismo ofrece altos flujos de gas con una FIO2 fijo. Existen dos grandes ventajas con la utilización de este sistema:
  1. Se puede proporcionar una FIO2 constante y definida
  2. Al suplir todo el gas inspirado se puede controlar: temperatura, humedad y concentración de oxígeno
   El sistema de bajo flujo no porporciona la totalidad del gas inspirado y parte del volumen inspirado debe ser tomado del medio ambiente. Este método se utiliza cuando el volumen corriente del paciente está por encima de las ¾ partes del valor normal, si la frecuencia respiratoria es menor de 25 por minuto y si el patrón ventilatorio es estable. En los pacientes en que no se cumplan estas especificaciones, se deben utilizar sistemas de alto flujo.
   La cánula o catéter nasofaríngeo es el método más sencillo y cómodo para la administración de oxígeno a baja concentración en pacientes que no revisten mucha gravedad.
Por lo general no se aconseja la utilización de la cánula o catéter nasofaríngeo cuando son necesarios flujos superiores a 6 litros por minuto, debido a que el flujo rápido de oxígeno ocasiona la resecación e irritación de las fosas nasales y porque aportes superiores no aumentan la concentración del oxígeno inspirado .
    Otro método de administración de oxígeno es la máscara simple, usualmente de plástico que posee unos orificios laterales que permiten la entrada libre de aire ambiente. Estas máscaras se utilizan para administrar concentraciones medianas. No deben utilizarse con flujos menores de 5 litros por minuto porque al no garantizarse la salida del aire exhalado puede haber reinhalación de CO2.
Fracción Inspirada de Oxigeno con dispositivos de bajo y alto flujo
Sistemas de Bajo Flujo
DISPOSITIVO Flujo en L/min FiO2 (%)
Cánula Nasal 1 24
2 28
3 32
4 36
5 40
Mascara de Oxigeno Simple 5-6 40
6-7 50
7-8 60
Mascara de Reinhalación Parcial 6 60
7 70
8 80
9 90
10 99
Mascara de no Reinhalación 4-10 60-100
Sistemas de Alto Flujo
Máscara de Venturi (Verificar el flujo en L/min. Según el fabricante) 3 24
6 28
9 35
12 40
15 50
    
Finalmente, hay un pequeño grupo de pacientes en los cuales la administración de oxígeno en dosis altas (20-30 litros por minuto) permite mantener niveles adecuados de PaO2 sin necesidad de recurrir a apoyo ventilatorio. Existe controversia sobre este tipo de pacientes. Algunos sostienen que la incapacidad de lograr niveles adecuados de PaO2 con flujos normales de oxígeno es ya una indicación de apoyo ventilatorio, otros prefieren dejar ese apoyo para el caso en que no haya respuesta aun con flujos elevados de O2.

MÉTODOS DE ADMINISTRACIÓN
  1. Carpa: el más usado. El flujo debe ser suficiente para permitir el lavado de CO2. Suele ser suficiente un flujo de 3 a 5 litros.
  2. Mascarilla: puede usarse durante el transporte o en situaciones de urgencia.
    1. Ventajas: un medio sencillo de administrar O2
    2. Inconvenientes:
      1. Mal tolerado en lactantes
      2. El niño puede quitársela fácilmente
  3. Catéter nasal: no usado habitualmente
    1. Ventajas. Útil en niños con enfermedad pulmonar crónica, ya que permite los libres movimientos del niño y la alimentación por vía oral mientras se administra el oxígeno
    2. Inconvenientes. Imposible determinar la FiO2 administrada a la tráquea. El flujo requerido debe ser regulado en función de la sat. O2
  4. Tubo en "T". En niños con traqueotomía o tubo endotraqueal, hay un flujo continuo de gas. Se necesita un flujo de 3 a 5 litros para lavar el CO2 producido por el niño
  5. Ventilación mecánica. En niños que reciben P.P.I. o C.P.A.P., la concentración de O2 inspirado es suministrada por el respirador directamente en la vía aérea del paciente
Procedimiento
  1. Mezcla de aire y oxígeno, usando:
    1. Dos flujímetros
    2. Un nebulizador donde se diluye el oxígeno con aire usando el efecto Venturi. (Solo administra gas a presión atmosférica)
    3. Un mezclador de gases que permita marcar la concentración de O2 deseada y administrarla con seguridad, incluso a altas presiones
  2. El oxígeno debe administrarse a la temperatura del cuerpo y humedificado
Precauciones y posibles complicaciones

    El oxígeno, como cualquier medicamento,debe ser administrado en las dosis y por el tiempo requerido, con base en la condición clínica del paciente y, en lo posible, fundamentado en la medición de los gases arteriales. Se deben tener en cuenta las siguientes precauciones:
  • Los pacientes con hipercapnia crónica (PaCO2 mayor o igual a 44 mmHg a nivel del mar) pueden presentar depresión ventilatoria si reciben concentraciones altas de oxígeno; por lo tanto, en estos pacientes está indicada la administración de oxígeno a concentraciones bajas (no mayores de 30%). En pacientes con EPOC, hipercápnicos e hipoxémicos crónicos, el objetivo es corregir la hipoxemia (PaO2 por encima de 60 mmHg y saturación mayor de 90%) sin aumentar de manera significativa la hipercapnia.
  • Con FiO2 mayor o igual a 0,5 (50%) se puede presentar atelectasia de absorción, toxicidad por oxígeno y depresión de la función ciliar y leucocitaria.
  • En prematuros debe evitarse llegar a una PaO2 de más 80 mmHg, por la posibilidad de retinopatía.
  • En niños con malformación cardiaca ductodependiente el incremento en la PaO2 puede contribuir al cierre o constricción del conducto arterioso.
  • El oxígeno suplementario debe ser administrado con cuidado en intoxicación por paraquat y en pacientes que reciben bleomicina.
  • Durante broncoscopia con láser, se deben usar mínimos niveles de oxígeno suplementario por el riesgo de ignición intratraqueal.
  • El peligro de un incendio aumenta en presencia de concentraciones altas de oxígeno. Todo servicio de urgencias debe tener a mano extintores de fuego.
  • Otro posible riesgo es la contaminación bacteriana asociada con ciertos sistemas de nebulización y humidificación.
Control de la Infección

   Bajo circunstancias normales los sistemas de oxígeno de flujo bajo (incluyendo cánulas y máscara simples) no representan riesgos clínicamente importantes de infección, siempre y cuando se usen en el mismo paciente, y no necesitan ser reemplazados rutinariamente. Los sistemas de alto flujo que emplean humidificadores precalentados y generadores de aerosol, especialmente cuando son aplicados a personas con vía aérea artificial, generan un importante riesgo de infección. Ante la ausencia de estudios definitivos sobre los intervalos de cambio de los equipos la guía de la American Association for Respiratory Care (AARC) recomienda establecer la frecuencia de cambio de los equipos de acuerdo con los resultados obtenidos por el comité de infecciones en cada institución. En forma general, se recomienda hacerlo cada 2-3 días.

  Algunos de los dispositivos para la administración

Paciente intubado con FiO2 alta Monitorización de la Saturación de Oxígeno en celeste
Terminal de saturímetro Caudalimetro para administración de oxígeno
Paciente con cánulas nasales Humidificador del aire inspirado
Mascarilla con bolsa de resucitación Bolsa de resucitación con sistemas de oxígeno

jueves, 29 de marzo de 2012

terapia respiratoria aspiracion de secreciones

Aspiración de secreciones por orofaringe y nasofaringe


La aspiracion de secreciones por orofaringe y nasofaringe consiste en la extracción de secreciones de las vías respiratorias, cuando el enfermo no puede expulsarlas por sí mismo, y se realiza mediante la introducción de un catéter de aspiración en la vía aérea oral y traqueal del paciente.

Esto se realiza con el fin de:
*Mantener la permeabilidad de las vías aéreas del paciente:
Conseguir la eliminación de las secreciones que obstruyen la vía aérea para facilitar la ventilación respiratoria.
- Prevenir infecciones respiratorias como consecuencia de la acumulación de secreciones.
- Facilitar la toma de muestras.
Para realizar esta tecnica necesitamos:
Material y equipo necesario.
- Aspirador de vacío.
- Batea.
- Toma de oxígeno.
- Caudalímetro.
- Vacuómetro.
- Tubo conector.
- Fonendoscopio.
- Resucitador manual con reservorio.
- Sondas de aspiración estériles del número adecuado.
- Recipiente para las secreciones.
- Guantes estériles.
- Gasas estériles.
- Mascarilla.
*Solución de lavado:
- agua estéril o suero fisiológico estéril.
- Empapador.
- Batas desechables.
- Bolsa de residuos.
- Toallitas de papel desechables.
- Mascarilla de oxígeno.
- Lubricante estéril.
- Registros de enfermería.
*El procedimiento a seguir es el siguiente:
- Realizar lavado de manos.
- Preparar el material.
- Preservar la intimidad del paciente.
- Informar al paciente del procedimiento a seguir.
- Solicitar la colaboración del paciente y familia.
- Conectar el aspirador y el equipo de aspiración.
Comprobar su correcto funcionamiento.
- Elegir calibre de la sonda adecuado.
El diámetro ha de ser igual a la mitad de la vía aérea (adultos: 12-18 F; niños: 6-12 F y lactantes 5-6 F) - Seleccionar la presión adecuada en el vacuómetro:adultos 115-150 mmHg, niños 95-115 mmHg y lactantes 50-95 mmHg
- Colocar al paciente en la posición semi-fowler. Si la aspiración se va a realizar vía oral, situar al paciente con la cabeza ladeada; si es vía nasal, poner el cuello del paciente en hiperextensión; si el paciente está inconsciente, colocarlo en decúbito lateral.
- Colocar un empapador cubriendo la almohada o bajo la barbilla del paciente.
- Preoxigenar al paciente si precisa (seguir normas generales en el manejo de la oxígenoterapia)
- Colocarse mascarilla, guantes estériles y bata desechable.
- Medir la distancia a introducir, entre el puente nasal y lóbulo de la oreja (aproximadamente unos 13 cm).
- Lubricar la sonda en la aspiración nasofaríngea.
- En caso de secreciones secas y tapones mucosos, instilar suero fisiológico 0,9% e hiperinsuflar previo al procedimiento de aspiración.
- Introducir la sonda sin aspiración por la boca o la nariz y realizar una aspiración intermitente al extraer la sonda. Esta maniobra no debe exceder los 10 segundos.
- En la aspiración orofaríngea, insertar la sonda en el lateral de la orofarínge.
- Limpiar la sonda con gasas estériles y aspirar agua o suero fisiológico estéril.
- Repetir las aspiraciones las veces que sea necesario.
- Desechar la sonda y los guantes tras la aspiración.
- Dejar descansar al paciente entre aspiración y aspiración.
- Animar al paciente para que respire profundamente y realice el procedimiento de tos asistida.
- Colocar al paciente en la posición más adecuada.
- Recoger el material.
- Retirarse guantes y mascarilla.
- Realizar lavado de manos.
- Registrar en la documentación de enfermería: procedimiento, motivo, fecha y hora, incidencias, características de las secreciones y la respuesta del paciente.
*Consideraciones a tener en cuenta:
- Técnica estéril. La tecnica ha de ser esteril en todo momento, ya que se realiza una invasion de las vias respiratorias, que se encuentran en condiciones de esterilidad.
- Evitar realizar aspiración de secreciones tras las comidas.
- Utilizar una sonda nueva cada vez que se realice la maniobra de aspiración.
*Para mantener la esterilidad.
- Observar signos de dificultad respiratoria o cardiaca.
- Dejar equipo repuesto tras cada aspiración.
 * En caso de urgencia ha de estar todo a mano.
- Las complicaciones a corto plazo o inmediatas que pueden surgir son: broncoespasmo, hipoxemia, bradicardia, traumatismo traqueal y bronquial, ansiedad, hipotensión, hipertensión y aumento de la presión intracraneal. A largo plazo puede ocurrir infección respiratoria.

miércoles, 8 de febrero de 2012

TERAPIA RESPIRATORIA

PAV EN PEDIATRÍA
Recientemente, el hospital adquirió tres ventiladores Respironics Vision con los opcionales (O2 y PAV).

Como ocurre con casi toda la tecnología, se subutiliza y no se aprovechan todas las prestaciones que son capaces de entregr los equipos.

La cosa es que me atreví a utilizar ventilación asistida proporcional (PAV) en una pacientita de 3 años de edad. Toda la experiencia en la utilización de PAV es en adultos.

Era una paciente que presentaba una alteración principalmente obstructiva, por lo que la programación de la ventilación fue hecha de acuerdo a esa premisa.

Lo bueno de todo esto es que hubo complicidad con la doctora residente que estaba de turno. Me permitió, entonces probar una modalidad ventilatoria absolutamente nueva para nosotros.

La paciente anduvo espectacularmente bien. Llegó con score de dificultad respiratoria de 11 puntos de 12. A los 30 minutos había descendido a 8 puntos y a las 6 horas se encontraba en 6 puntos.

La programación la realicé “probando” parámetros hasta que la paciente se sintió tranquila con el ventilador.

Seguiré intentando con esta modalidad que tiene la gracia de apoyar según el esfuerzo del paciente. Es decir, a mayor esfuerzo ventilatorio, mayor entrega de flujo de asistencia y de volumen de asistencia. Esa es la diferencia con la ventilación no invasiva normal, en la cual haga el esfuerzo que haga el paciente, la presión de soporte se mantiene inalterable.